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Section 2. Symmetrical Components

Transformation matrices and the decoupling that occurs in balanced three-phase systems.
Physical significance of zero sequence.

2.1 Transformation Matrix

Fortescue's Theorem:  An unbalanced set of N related phasors can be resolved into N systems of
phasors called the symmetrical components of the original phasors.  For a three-phase system (i.e.
N = 3), the three sets are:

1. Positive Sequence - three phasors, equal in magnitude, 120o apart, with the same sequence (a-
b-c) as the original phasors.

2. Negative Sequence - three phasors, equal in magnitude, 120o apart, with the opposite
sequence (a-c-b) of the original phasors.

3. Zero Sequence - three identical phasors (i.e. equal in magnitude, with no relative phase
displacement).

The original set of phasors is written in terms of the symmetrical components as follows:

~ ~ ~ ~
V V V Va a a a= + +0 1 2  ,

~ ~ ~ ~
V V V Vb b b b= + +0 1 2  ,

~ ~ ~ ~
V V V Vc c c c= + +0 1 2  ,

where 0 indicates zero sequence, 1 indicates positive sequence, and 2 indicates negative sequence.

The relationship among the sequence components for a-b-c are

Positive Sequence Negative Sequence Zero Sequence

~ ~
V Vb a1 1 1= • ∠ − 120o ~ ~

V Vb a2 2 1= • ∠ + 120o
000

~~~
cba VVV ==

~ ~
V Vc a1 1 1= • ∠ + 120o ~ ~

V Vc a2 2 1= • ∠ − 120o

The symmetrical components of all a-b-c voltages are usually written in terms of the symmetrical
components of  phase a by defining

a = ∠ +1 120o  , so that a2 1 1= ∠ + = ∠ −240 120o o  , and a3 1 1= ∠ + = ∠360 0o o .

Substituting into the previous equations for 
~

,
~

,
~

V V Va b c  yields
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~ ~ ~ ~
V V V Va a a a= + +0 1 2  ,

21
2

0
~~~~
aaab VaVaVV ++=  ,

~ ~ ~ ~
V V aV a Vc a a a= + +0 1

2
2  .

In matrix form, the above equations become
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or in matrix form

~ ~
V T Vabc = • 012  , and 

~ ~
V T Vabc012

1= •−  ,

where transformation matrix T is

T a a

a a

=
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2
, and T a a
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− =
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 .

If 
~
Vabc  represents a balanced set (i.e. 

~ ~ ~
V V a Vb a a= • ∠ − =1 2120o  ,

~ ~ ~
V V aVc a a= • ∠ + =1 120o ), then substituting into 

~ ~
V T Vabc012

1= •−  yields
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 .

Hence, balanced voltages or currents have only positive sequence components, and the positive
sequence components equal the corresponding phase a voltages or currents.

If 
~
Vabc  is an identical set (i.e. 

~ ~ ~
V V Va b c= =  ), substituting into 

~ ~
V T Vabc012

1= •−  yields
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 ,

which means that V V Va b c, ,  have only zero sequence components, and that these components are
identical and equal to Va  .
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Notice from the top row of 
~ ~
V T Vabc012

1= •−  that V0  is one-third of the sum of the three phase
voltages or currents.  Therefore, since the sum of three line-to-line voltages is identically zero due
to Kirchhoff's voltage law, line-to-line voltages can have no zero sequence components.

2.2 Relationship Between Zero Sequence Currents and Neutral Current

Consider the relationship between zero sequence current and neutral current  The zero sequence
current is

( )~ ~ ~ ~
I I I Ia a b c0

1

3
= + +  ,

and, from Kirchhoff's current law, the neutral current is

( )~ ~ ~ ~
I I I In a b c= − + +  .

Because the positive and negative sequence components of the a-b-c currents sum to zero, while

the zero sequence components are additive, then 
~ ~
I In a= −3 0  .  Therefore, in a four-wire, three-

phase system, the neutral current is three-times the zero sequence current.  In a three-wire, three-
phase system, there is no zero sequence current.
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In = 3Io
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4 Wire

In = 3Io = Ia + Ib + IcSystem

Figure 2.1:  Relationship Between Zero Sequence Currents and Neutral Current

2.3 Decoupling in Systems with Balanced Impedances

In a three-phase system with balanced impedances, the relationship among voltage, current, and
impedance has the form
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 , or 
~ ~
V Z Iabc abc abc= •  ,

where S represents the self impedances of the phases, and M represents the mutual impedances.

This equation can be expressed in terms of sequence components by substituting 
~ ~
V T Vabc = • 012

and 
~ ~
I T Iabc = • 012  , yielding
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T V Z T Iabc• = • •
~ ~
012 012  .

Premultiplying by T −1  yields

~ ~ ~
V T Z T I Z Iabc012

1
012 012 012= • • = •−  ,

where Z T Z Tabc012
1= •−  .  The symmetric form of abcZ  given above yields

Z

S M

S M

S M
012
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=
+

−
−

















 ,

which means that when working in sequence components, a circuit with symmetric impedances is
decoupled into three separate impedance networks with Z S M0 2= +  , and Z Z S M1 2= = −  .
Furthermore, if the voltages and currents are balanced, then only the positive sequence circuit
must be studied.

In summary, symmetrical components are useful when studying either of the following two
situations:

1. Symmetric networks with balanced voltages and currents.  In that case, only the positive
sequence network must be studied, and that network is the "one-line" network.

2. Symmetric networks with unbalanced voltages and currents.  In that case, decoupling applies,
and three separate networks must be studied (i.e. positive, negative, and zero sequences).  The
sequence components of the voltages and currents can be transformed back to a-b-c by using
the T transformation matrix.

2.4 Power

For a three-phase circuit, with voltages referenced to neutral,

P V I V I V I V Iabc an a bn b cn c abc
T

abc= + + = •
~ ~ ~ ~ ~ ~ ~ ~* * * *  .

Substituting in 
~ ~
V T Vabc = • 012  and 

~ ~
I T Iabc = • 012  yields

P V T T Iabc
T T= • • •

~ ~* *
012 012  .

Since T a a

a a

=
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 , then T TT =  .  Also, T a a
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 .  Therefore,



Grady, /www.ece.utexas.edu/~grady/, 10/24/98

2 - 5

T TT • =

















*
3 0 0

0 3 0

0 0 3

, so that P V Iabc
T= •
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~ ~*
012 012
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0 3 0

0 0 3

 , or

( )P V I V I V Iabc a a a a a a= + +3 0 0 1 1 2 2
~ ~ ~ ~ ~ ~* * *  .

Note the factor of three.  If desired, the following power invariant transformation can be used to
avoid the factor of three:
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 ,

so that P V I V I V Iabc a a a a a a= + +
~ ~ ~ ~ ~ ~* * *

0 0 1 1 2 2  .


