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Section 3. Transformers, Transmission Lines, and Underground Cables  

Transformers.  Transformer phase shift.  Wye-delta connections and impact on zero sequence.  
Inductance and capacitance calculations for transmission lines.  GMR, GMD, L, and C matrices, 
effect of ground conductivity.  Underground cables. 

3.1 Transformers 

3.1.1  Equivalent Circuits 

The standard transformer equivalent circuit used in power system simulation is shown below, 
where the R and X terms represent the series resistance and leakage reactance, and N1 and N2 
represent the transformer turns.  Note that the shunt terms are usually ignored in the model.. 

R jX

N1 N2

 

Figure 3.1:  Power System Model for Transformer 

Three-phase transformers can consist of either three separate single-phase transformers, or three 
windings on a three-legged, four-legged, or five-legged core.  The high-voltage and low-voltage 
sides can be connected independently in either wye or delta. 

A B C

High-Voltage Side

Low-Voltage Side  

Figure 3.2:  A Three-Phase Ground-Wye Grounded-Wye Transformer 
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A B C

High-Voltage Side

Low-Voltage Side  

Figure 3.3:  A Three-Phase Delta-Delta Transformer 

The transformer impedances consist of winding resistances and leakage reactances.  There are no 
mutual resistances, and the mutual leakage reactances between the separate phase a-b-c coils are 
negligible.  Hence, in symmetrical components, S = R + jX, and M = 0, so that S + 2M = S - M 
= R + jX, so therefore the positive and negative sequence impedances of a transformer are 

 Z Z R jX1 2= = +  . 

One must remember that no zero sequence currents can flow into a three-wire connection.  
Therefore, the zero sequence impedance of a transformer depends on the winding connections.  
In the case where one side of a transformer is connected grounded-wye, and the other side is 
delta, circulating zero sequence currents can be induced in the delta winding.  In that case, the 
zero sequence impedance "looking into" the transformer is different on the two sides.  

The zero sequence equivalent circuits for three-phase transformers is given in Figure 3.4. 
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Grounded Wye - Grounded Wye

Grounded Wye - Delta R + jX

Grounded Wye - Ungrounded Wye R + jX

R + jXUngrounded Wye - Delta

R + jXDelta - Delta

R + jX

 

Figure 3.4:  Zero Sequence Impedance Equivalent Circuits for Three-Phase Transformers 

A wye-delta transformer connection introduces a 30o phase shift in positive/negative sequence 
voltages and currents because of the relative shift between line-to-neutral and line-to-ground 
voltages.  Transformers are labeled so that 

1. High side positive sequence voltages and currents lead those on the low side by 30o. 

2. High side negative sequence voltages and currents lag those on the low side by 30o. 

3. There is no phase shift for zero sequence. 

Transformer tap magnitudes can be adjusted to control voltage, and transformer phase shifts can 
be adjusted to control active power flow.  The effect of these "off-nominal" adjustments can be 
incorporated into a pi-equivalent circuit model for a transformer. 
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Figure 3.5:  Off-Nominal Transformer Circuit Model 

Assume that the transformer in Figure 3.5 has complex "off-nominal" tap t t∠θ t and series 
admittance y.  The relationship between the voltage on opposite sides of the transformer tap is 
~

~
'V

V
tk

i

t
=

∠θ
 , and since the power on both sides of the ideal transformer must be the same, then 

~ ~ ~ ~*
' '

*V I V Ii i k k=  , implying that ~ ~
'I I tk i t= ∠−θ  .  Now, suppose that the transformer can be 

modeled by the following pi-equivalent circuit of Figure 3.6: 

yik
Ii --->

Bus i

yii

Bus k

<--- -Ik

ykk

 

Figure 3.6:  Pi-Equivalent Model of Transformer 

Admittances yii, yik, and ykk can be found so that the above circuit is equivalent to Figure 3.5.  
This can be accomplished by forcing the terminal behavior to be the same.  For the above circuit, 
the appropriate equations are 

 ( )~ ~ ~ ~I V V y V yi i k ik i ii= − +  , and ( )− = − +
~ ~ ~ ~I V V y V yk k i ik k kk  , 

or in matrix form 

 
~
~

~
~

I
I

y y y
y y y

V
V

i

k

ii ik ik

ik kk ik

i

k−









 =

+ −
− +


















  . 

For Figure 3.5, the terminal equations are 

 ( )~ ~ ~
~

~
'I V V y

V
t

V yk k k
i

t
k= − =

∠
−











θ
 , 

and since 
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 ~
~

I
I
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t
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∠−θ
 , 

then 

 ~
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I
V

t t
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t
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t t

k

t
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∠ • ∠ −
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θ θ θ
 . 

In matrix form, 

 
~
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y
t t
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y
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i
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t t t
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i

k−


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
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
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
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
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θ θ θ

θ

 . 

Comparing the two sets of terminal equations shows that equality can be reached if the shunt 
branch in the equivalent circuit, yik, can have two values: 

 y
y

tik
t

=
∠−θ

 from the perspective of Kirchhoff's current law at bus i,  y
y

tik
t

=
∠θ

 from the perspective of Kirchhoff's current law at bus k. 

Note that if the tap does not include an off-nominal phase shift, then y
y
tik =  from either 

direction. 

Next, solving for yii and ykk yields  

 y
y

t t
y

t
y

t tii
t t t t t

=
∠ • ∠ −

−
∠ −

=
∠ − ∠

−








θ θ θ θ θ
1

1  , 

 y y
y

t
y

tkk
t t

= −
∠

= −
∠









θ θ
1

1
 . 

3.1.2  Neutral Grounding Impedance 

If the wye-side of a transformer or wye-connected load is grounded through a grounding 
impedance Zg, the grounding impedance is "invisible" to the positive and negative sequence 
currents since their corresponding voltages at the wye-point is always zero due to symmetry.  
However, since the neutral current is three-times the zero sequence current, the voltage drop on 
the grounding impedance is 3Iao.  For that reason, the zero sequence equivalent circuit for a 
grounding impedance must contain 3Zg. 
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Z Z Z

Zg

Zao = Z + 3Zg
+

-
Vao = 3 Iao Zg

Iao Iao Iao

Za1 = Za2 = Z

 

Figure 3.7:  Effect of Grounding Impedance on Sequence Impedances 

3.2 Transmission Lines 

3.2.1  Equivalent Circuit 

The power system model for transmission lines is developed from the conventional distributed 
parameter model, shown in Figure 3.8. 

+

-
v

R/2 L/2

G C

R/2 L/2

i --->

<--- i

+

-

v + dv

i + di --->

<--- i + di

R, L, G, C per unit length

< >dz

 

Figure 3.8:  Distributed Parameter Model for Transmission Line 

Once the values for distributed parameters resistance R, inductance L, conductance G, and 
capacitance are known (units given in per unit length), then either "long line" or "short line" 
models can be used, depending on the electrical length of the line. 

Assuming for the moment that R, L, G, and C are known, the relationship between voltage and 
current on the line may be determined by writing Kirchhoff's voltage law (KVL) around the 
outer loop in Figure 3.8, and by writing Kirchhoff's current law (KCL) at the right-hand node. 

KVL yields 

 − + + + + + + =v
Rdz

i
Ldz i

t
v dv

Rdz
i

Ldz i
t2 2 2 2

0
∂
∂

∂
∂

. 
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This yields the change in voltage per unit length, or 

 
∂
∂

∂
∂

v
z

Ri L
i
t

= − −  , 

which in phasor form is 

 ( )∂
∂

ω
~

~V
z

R j L I= − +  . 

KCL at the right-hand node yields 

 ( ) ( )
− + + + + +

+
=i i di Gdz v dv Cdz

v dv
t

∂
∂

0  . 

If dv is small, then the above formula can be approximated as 

 ( )di Gdz v Cdz
v
t

= − −
∂
∂

 , or 
∂
∂

∂
∂

i
z

Gv C
v
t

= − −  , which in phasor form is 

 ( )∂
∂

ω
~

~I
z

G j C V= − +  . 

Taking the partial derivative of the voltage phasor equation with respect to z yields 

 ( )∂
∂

ω
∂
∂

2

2

~ ~V
z

R j L
I
z

= − +  . 

Combining the two above equations yields 

 ( )( )∂
∂

ω ω γ
2

2
2

~
~ ~V

z
R j L G j C V V= + + =  , where ( )( )γ ω ω α β= + + = +R j L G j C j  , and 

where γ , α, and β  are the propagation, attenuation, and phase constants, respectively. 

The solution for %V  is 

 ~( )V z Ae Bez z= + −γ γ  . 

A similar procedure for solving %I  yields 

 
o

zz

Z
BeAezI

γγ −+−
=)(~  , 

where the characteristic or "surge" impedance Zo  is defined as 
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( )
( )Z

R j L
G j Co =
+
+

ω
ω

 . 

Constants A and B must be found from the boundary conditions of the problem.  This is usually 
accomplished by considering the terminal conditions of a transmission line segment that is d 
meters long, as shown in Figure 3.9. 

d< >

+

-

+

-
Vs Vr

Is ---> Ir --->

<--- Is <--- Ir

Sending End Receiving End

Transmission
Line Segment

z = 0z = -d

 

Figure 3.9:  Transmission Line Segment 

In order to solve for constants A and B, the voltage and current on the receiving end is assumed 
to be known so that a relation between the voltages and currents on both sending and receiving 
ends may be developed. 

Substituting z = 0 into the equations for the voltage and current (at the receiving end) yields 

 ( )
o

RR Z
BAIBAV −−

=+= ~ ,~  . 

Solving for A and B yields 

 
2

~
 ,

2

~
RoRRoR IZV

B
IZV

A
+

=
−

= . 

Substituting into the ~( )V z  and ~( )I z  equations yields 

 ( ) ( )~ ~ cosh ~ sinhV V d Z I dS R R= +γ γ0  , 

 ( ) ( )~
~

sinh ~ coshI
V
Z

d I dS
R

o
R= +γ γ  . 

A pi equivalent model for the transmission line segment can now be found, in a similar manner 
as it was for the off-nominal transformer.  The results are given in Figure 3.10. 
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Y Y

d

ZS R
o

= =





tanh

γ
2  , ( )Y

Z dSR
o

=
1

sinh γ
 , 

( )
( )Z

R j L
G j Co =
+
+

ω
ω

 , ( )( )γ ω ω= + +R j L G j C  

R, L, G, C per unit length 

Figure 3.10:  Pi Equivalent Circuit Model for Distributed Parameter Transmission Line 

Shunt conductance G is usually neglected in overhead lines, but it is not negligible in 
underground cables. 

For electrically "short" overhead transmission lines, the hyperbolic pi equivalent model 
simplifies to a familiar form.  Electrically short implies that d < 0.05λ , where wavelength 

( )
λ

ε
=

3 108 m s

f Hzr

/
 = 5000 kM @ 60 Hz, or 6000 kM @ 50 Hz.  Therefore, electrically short 

overhead lines have d < 250 kM @ 60 Hz, and d < 300 kM @ 50 Hz.  For underground cables, 
the corresponding distances are less since cables have somewhat higher relative permittivities 
(i.e. εr ≈ 2 5.  ). 

Substituting small values of γd into the hyperbolic equations, and assuming that the line losses 
are negligible so that G = R = 0, yields  

 Y Y
j Cd

S R= =
ω
2

 , and Y
j LdSR =

1
ω

 . 

Then, including the series resistance yields the conventional "short" line model shown in Figure 
3.11, where half of the capacitance of the line is lumped on each end. 
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< >d

Cd
2
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2

Rd Ld

R, L, C per unit length  

Figure 3.11:  Standard Short Line Pi Equivalent Model for a Transmission Line 

3.2.2  Capacitance 

Overhead transmission lines consist of wires that are parallel to the surface of the earth.  To 
determine the capacitance of a transmission line, first consider the capacitance of a single wire 
over the earth.  Wires over the earth are typically modeled as line charges ρl  Coulombs per 
meter of length, and the relationship between the applied voltage and the line charge is the 
capacitance. 

A line charge in space has a radially outward electric field described as 

 E
q

r
al

o
r=

2πε
$  Volts per meter . 

This electric field causes a voltage drop between two points at distances r = a and r = b away 
from the line charge.  The voltage is found by integrating electric field, or 

 V E ra
q b

aab
r a

r b
r

l

o
= • = 





=

=
∫ $ ln

2πε
 V. 

If the wire is above the earth, it is customary to treat the earth's surface as a perfect conducting 
plane, which can be modeled as an equivalent image line charge − ql  lying at an equal distance 
below the surface, as shown in Figure 3.12. 
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Surface of Earth

h

a

b

aibi

A

B
h

Conductor with radius r, modeled electrically
as a line charge ql at the center

Image conductor, at an equal distance below
the Earth, and with negative line charge -ql  

Figure 3.12:  Line Charge ql  at Center of Conductor Located h Meters Above the Earth 

From superposition, the voltage difference between points A and B is 

 V E a E a
q b

a
bi
ai

q b ai
a biab

r a

r b
r i

r ai

r bi
r

l

o

l

o
= • + • = 




− 













 =

•
•







=

=

=

=
∫ ∫ρ ρ πε πε

$ $ ln ln ln
2 2

 . 

If point B lies on the earth's surface, then from symmetry, b = bi, and the voltage of point A with 
respect to ground becomes 

 V
q ai

aag
l

o
=





2πε

ln  . 

The voltage at the surface of the wire determines the wire's capacitance.  This voltage is found 
by moving point A to the wire's surface, corresponding to setting a = r, so that 

 V
q h

rrg
l

o
≈ 



2

2
πε

ln  for h >> r. 

The exact expression, which accounts for the fact that the equivalent line charge drops slightly 
below the center of the wire, but still remains within the wire, is 

 V
q h h r

rrg
l

o
=

+ +









2

2 2

πε
ln  . 



Grady, /www.ece.utexas.edu/~grady/, 03/02/28 

Page 12 of 29 

The capacitance of the wire is defined as C
V

l

rg
=

ρ
 which, using the approximate voltage formula 

above, becomes 

 C h
r

o=






2
2
πε

ln
 Farads per meter of length. 

When several conductors are present, then the capacitance of the configuration must be given in 
matrix form.  Consider phase a-b-c wires above the earth, as shown in Figure 3.13. 

a

ai

b

bi

c

ci

Daai

Dabi

Daci

Dab
Dac

Surface of Earth

Three Conductors Represented by Their Equivalent Line Charges

Images

Conductor radii ra, rb, rc

 

Figure 3.13:  Three Conductors Above the Earth 

Superposing the contributions from all three line charges and their images, the voltage at the 
surface of conductor a is given by 

 V q
D
r

q
D
D

q
D
Dag

o
a

aai

a
b

abi

ab
c

aci

ac
= + +











1
2πε

ln ln ln  . 

The voltages for all three conductors can be written in generalized matrix form as 

 
V
V
V

p p p
p p p
p p p

q
q
q

ag

bg

cg
o

aa ab ac

ba bb bc

ca cb cc

a

b

c
















=

































1
2πε

 , or V P Qabc
o

abc abc=
1

2πε
 , 

where 
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 p
D
raa
aai

a
= ln  , p

D
Dab

abi

ab
= ln  , etc., and 

ra   is the radius of conductor a, 

Daai  is the distance from conductor a to its own image (i.e. twice the height of 
conductor a above ground), 

Dab  is the distance from conductor a to conductor b, 

D Dabi bai=  is the distance between conductor a and the image of conductor b (which 
is the same as the distance between conductor b and the image of 
conductor a), etc. 

A Matrix Approach for Finding C 

From the definition of capacitance, Q CV= , then the capacitance matrix can be obtained via 
inversion, or 

 C Pabc o abc= −2 1πε  . 

If ground wires are present, the dimension of the problem increases proportionally.  For example, 
in a three-phase system with two ground wires, the dimension of the P matrix is 5 x 5.  However, 
given the fact that the line-to-ground voltage of the ground wires is zero, equivalent 3 x 3 P and 
C matrices can be found by using matrix partitioning and a process known as Kron reduction.  
First, write the V = PQ equation as follows: 

 

V
V
V

V
V

P P

P P

q
q
q

q
q

ag

bg

cg

vg

wg

o

abc abc vw

vw abc vw

a

b

c

v

w

−
=
=



























= − −















 −

























0
0

1
2

3 3 3 2

2 3 2 2
πε

( ) | ( )

( ) | ( )

,

,

x x

x x
 , 

or 

 
V
V

P P
P P

Q
Q

abc

vw o

abc abc vw

vw abc vw

abc

vw









 =




















1
2πε

,

,
 , 

where subscripts v and w refer to ground wires w and v, and where the individual P matrices are 
formed as before.  Since the ground wires have zero potential, then 
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 [ ]0
0

1
2





= +

πεo
vw abc abc vw vwP Q P Q, , 

so that 

 [ ]Q P P Qvw vw vw abc abc= − −1
,  . 

Substituting into the abcV  equation above, and combining terms, yields 

[ ] [ ] abcabcvwvwvwabcabc
o

abcabcvwvwvwabcabcabc
o

abc QPPPPQPPPQPV ,
1

,,
1

, 2
1

2
1 −− −=−=

πεπε
 , 

or 

 [ ]V P Qabc
o

abc abc=
1

2πε
'  , so that 

 abcabcabc VCQ '=  , where [ ]C Pabc o abc
' '=

−
2

1
πε  . 

Therefore, the effect of the ground wires can be included into a 3 x 3 equivalent capacitance 
matrix. 

An alternative way to find the equivalent 3 x 3 capacitance matrix '
abcC  is to 

• obtain the 5 x 5 C matrix by inverting the 5 x 5 P, and then 

• Kron reduce the 5 x 5 C directly. 

Computing 012 Capacitances from Matrices 

Once the 3 x 3 '
abcC  matrix is found by either of the above two methods, 012 capacitances can 

be determined by averaging the diagonal terms, and averaging the off-diagonal terms of, '
abcC  to 

produce 

 















=

SMM

SSM

MMS
avg
abc

CCC
CCC
CCC

C  . 

avg
abcC  has the special symmetric form for diagonalization into 012 components, which yields 
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















−
−

+
=

MS

MS

MS
avg

CC
CC

CC
C

00
00
002

012  . 

The Approximate Formulas for 012 Capacitances 

Asymmetries in transmission lines prevent the P and C matrices from having the special form 
that allows their diagonalization into decoupled positive, negative, and zero sequence 
impedances.  Transposition of conductors can be used to nearly achieve the special symmetric 
form and, hence, improve the level of decoupling.  Conductors are transposed so that each one 
occupies each phase position for one-third of the lines total distance.  An example is given below 
in Figure 3.14, where the radii of all three phases are assumed to be identical. 

a b c a cthen then

then then

b thenb a c

b c a c a b c b a

where each configuration occupies one-sixth of the total distance  

Figure 3.14:  Transposition of A-B-C Phase Conductors 

For this mode of construction, the average P matrix (or Kron reduced P matrix if ground wires 
are present) has the following form: 

 +
















••
•+






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



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••
•+

















••
•=

cc

acaa

bcabbb

bb
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abacaa
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bcbb
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avg
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p
pp
ppp

p
pp
ppp

p
pp
ppp

P
6
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6
1

6
1  

  
















••
•+

















••
•+








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where the individual p terms are described previously.  Note that these individual P matrices are 
symmetric, since D D p pab ba ab ba= =,  , etc.  Since the sum of natural logarithms is the same as 
the logarithm of the product, P becomes 
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where 
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Since avg
abcP  has the special property for diagonalization in symmetrical components, then 

transforming it yields 
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Inverting avgP012  and multiplying by oπε2  yields the corresponding 012 capacitance matrix 
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When the a-b-c conductors are closer to each other than they are to the ground, then 

 D D D D D Daai bbi cci abi aci bci≈  , 

yielding the conventional approximation 
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where GMD1 2,  and GMR1 2,  are the geometric mean distance (between conductors) and 
geometric mean radius, respectively, for both positive and negative sequences.  Therefore, the 
positive and negative sequence capacitances become 
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o πεπε
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−
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For the zero sequence term, 
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Expanding yields 
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where 

 ( )( )( )GMD D D D D D D D D Daai bbi cci abi aci bci bai cai cbi0 9=  , 

 ( )( )( )GMR r r r D D D D D Da b c ab ac bc ba ca cb0 9=  . 

The zero sequence capacitance then becomes 
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which is one-third that of the entire a-b-c bundle by because it represents the average 
contribution of only one phase. 

Bundled Phase Conductors 

If each phase consists of a symmetric bundle of N identical individual conductors, an equivalent 
radius can be computed by assuming that the total line charge on the phase divides equally 
among the N individual conductors.  The equivalent radius is 

 [ ]r NrAeq
N N= −1

1

 , 

where r is the radius of the individual conductors, and A is the bundle radius of the symmetric set 
of conductors.  Three common examples are shown below in Figure 3.15. 

Double Bundle, Each Conductor Has Radius r

A

 

 r rAeq = 2  

Triple Bundle, Each Conductor Has Radius r

A

 

 r rAeq = 3 23  

Quadruple Bundle, Each Conductor Has Radius r

A

 

 r rAeq = 4 34  

Figure 3.15:  Equivalent Radius for Three Common Types of Bundled Phase Conductors 
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3.2.3  Inductance 

The magnetic field intensity produced by a long, straight current carrying conductor is given by 
Ampere's Circuital Law to be 

 H
I
rφ π

=
2

 Amperes per meter, 

where the direction of H  is given by the right-hand rule. 

Magnetic flux density is related to magnetic field intensity by permeability m as follows: 

 B H= µ  Webers per square meter, 

and the amount of magnetic flux passing through a surface is 

 Φ = •∫ B ds  Webers, 

where the permeability of free space is ( )µ πo = −4 10 7 . 

Two Parallel Wires in Space 

Now, consider a two-wire circuit that carries current I, as shown in Figure 3.16. 

I I

Two current-carying wires with radii r

D
< >

 

Figure 3.16:  A Circuit Formed by Two Long Parallel Conductors 

The amount of flux linking the circuit (i.e. passes between the two wires) is found to be 

 Φ = + =
−− −

∫ ∫
µ
π

µ
π

µ
π

o

r

D r
o

r

D r
oI

x
dx

I
x

dx
I D r

r2 2
ln  Henrys per meter length. 

From the definition of inductance, 

 L
N

I
=

Φ
 , 
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where in this case N = 1, and where N >> r, the inductance of the two-wire pair becomes 

 L
D
r

o=
µ
π

ln   Henrys per meter length. 

A round wire also has an internal inductance, which is separate from the external inductance 
shown above.  The internal inductance is shown in electromagnetics texts to be 

 
π

µ
8
int

intL =  Henrys per meter length. 

For most current-carrying conductors, µ µint o=  so that intL  = 0.05µH/m.  Therefore, the total 
inductance of the two-wire circuit is the external inductance plus twice the internal inductance of 
each wire (i.e. current travels down and back), so that 

 L
D
r

D
r

D
r

e
D

re
tot

o o o o o= + = +




= +











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














=

−

µ
π

µ
π

µ
π
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π

µ
π

ln ln ln ln ln2
8

1
4

1
4

1
4

 . 

It is customary to define an effective radius 

 rrereff 7788.04
1

==
−

 , 

and to write the total inductance in terms of it as 

 
eff

o
tot r

DL ln
π
µ

=  Henrys per meter length. 

Wire Parallel to Earth’s Surface 

For a single wire of radius r, located at height h above the earth, the effect of the earth can be 
described by an image conductor, as it was for capacitance calculations.  For a perfectly 
conducting earth, the image conductor is located h meters below the surface, as shown in Figure 
3.17. 
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Surface of Earth

h

h

Conductor of radius r, carrying current I

Note, the image
flux exists only
above the Earth

Image conductor, at an equal distance below the Earth  

Figure 3.17:  Current-Carrying Conductor Above Earth 

The total flux linking the circuit is that which passes between the conductor and the surface of  
the earth.  Summing the contribution of the conductor and its image yields 
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For 2h r>> , a good approximation is 

 Φ =
µ
π
oI h

r2
2

ln  Webers per meter length, 

so that the external inductance per meter length of the circuit becomes 

 L
h
rext

o=
µ
π2

2
ln  Henrys per meter length. 

The total inductance is then the external inductance plus the internal inductance of one wire, or 

 L
h
r

h
r

h

re
tot

o o o o= + = +
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
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−
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4 2
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ln ln ln  , 

 or, using the effective radius definition from before, 

 
eff

o
tot r

hL 2ln
2π
µ

=  Henrys per meter length. 
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Bundled Conductors 

The bundled conductor equivalent radii presented earlier apply for inductance as well as for 
capacitance.  The question now is “what is the internal inductance of a bundle?”  For N bundled 

conductors, the net internal inductance of a phase per meter must decrease as 
N
1  because the 

internal inductances are in parallel.  Considering a bundle over the Earth, then 
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 . 

Factoring in the expression for the equivalent bundle radius eqr  yields 

 [ ] [ ]NN
eff

N
NNNNNeq ANrANreeNrAer

1
1

1

14
1

4
11

14
1

−−−−−−
=


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









=•=  

Thus, effr  remains 4
1−

re , no matter how many conductors are in the bundle. 

The Three-Phase Case 

For situations with multiples wires above the Earth, a matrix approach is needed.  Consider the 
capacitance example given in Figure 3.11, except this time compute the external inductances, 
rather than capacitances.  As far as the voltage (with respect to ground) of one of the a-b-c 
phases is concerned, the important flux is that which passes between the conductor and the 
Earth's surface.  For example, the flux "linking" phase a will be produced by six currents:  phase 
a current and its image, phase b current and its image, and phase c current and its image, and so 
on.  Figure 3.18 is useful in visualizing the contribution of flux “linking” phase a that is caused 
by the current in phase b (and its image). 
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Figure 3.18.  Flux Linking Phase a Due to Current in Phase b and Phase b Image 
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The linkage flux is 

 aΦ (due to bI  and bI  image) = 
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D
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=+  . 

Considering all phases, and applying superposition, yields the total flux 
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Note that Daai  corresponds to 2h in Figure 3.15.  Performing the same analysis for all three 
phases, and recognizing that N LIΦ =  , where N = 1 in this problem, then the inductance matrix 
is developed using 
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 , or Φabc abc abcL I=  . 

A comparison to the capacitance matrix derivation shows that the same matrix of natural 
logarithms is used in both cases, and that 

 L P C Cabc
o

abc
o

o abc o abc= = • • =− −µ
π

µ
π

πε µ ε
2 2

2 1 1  . 

This implies that the product of the L and C matrices is a diagonal matrix with µ εo  on the 
diagonal, providing that the earth is assumed to be a perfect conductor and that the internal 
inductances of the wires are ignored. 

If the circuit has ground wires, then the dimension of L increases accordingly.  Recognizing that 
the flux linking the ground wires is zero (because their voltages are zero), then L can be Kron 
reduced to yield an equivalent 3 x 3 matrix '

abcL . 

To include the internal inductance of the wires, replace actual conductor radius r with effr . 

Computing 012 Inductances from Matrices 

Once the 3 x 3 '
abcL  matrix is found, 012 inductances can be determined by averaging the 

diagonal terms, and averaging the off-diagonal terms, of '
abcL  to produce 
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The Approximate Formulas for 012 Inductancess 

Because of the similarity to the capacitance problem, the same rules for eliminating ground 
wires, for transposition, and for bundling conductors apply.  Likewise, approximate formulas for 
the positive, negative, and zero sequence inductances can be developed, and these formulas are 

 L L
GMD
GMR

o
1 2

1 2

1 22
= =

µ
π

ln ,

,
 , 

and 

 L
GMD
GMR

o
0

0

0
3

2
=

µ
π

ln  . 

It is important to note that the GMD and GMR terms for inductance differ from those of 
capacitance in two ways: 

1. GMR calculations for inductance calculations should be made with 4
1

−
= rereff . 

2. GMD distances for inductance calculations should include the equivalent complex depth for 
modeling finite conductivity earth (explained in the next section).  This effect is ignored in 
capacitance calculations because the surface of the Earth is nominally at zero potential. 

The Complex Depth Method for Modeling Imperfect Earth 

The effect of the Earth's non-infinite conductivity should be included when computing 
inductances, especially zero sequence inductances.  Because the Earth is not a perfect conductor, 
the image current does not actually flow on the surface of the Earth, but rather through a cross-
section.  The higher the conductivity, the narrower the cross-section. 

The simplest method to account for finite conductivity is via a complex depth dc  , where the 
equivalent earth surface is assumed to be an additional dc  meters below the actual earth surface.  
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Using complex depth, if a conductor is d meters above earth, its image is ( )cdd +2  meters 
below the conductor. 

 

 

 

 

 

 

 

 

The complex depth dc  is related to resistive skin depth d by 

 
j

dc +
=

1
δ  = o45

2
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δ  = 
22
δδ j−  , 

where 

 δ
π µσ

=
1
f
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At f = 60 Hz and σ =
−

0 01
1

.
Ω m

 (typical for limestone), the skin depth is 650 meters, so that 

 
2

650
2

650 jdc −=  = 325 – j325 m. 

Skin depth in typical soils for 50 - 60 Hz varies from 500 to 2000 meters.  The effect on 
positive/negative sequence inductances is not great, but the effect on zero sequence inductances 
is quite significant. 

Since dc  is a frequency-dependent complex number, the self- and image-distance terms are 
complex, their natural logarithms are complex, and the L matrix contains complex numbers.  The 
questions now are “how to take the natural log of a complex number and how to interpret the 
results?”   

Begin with the natural log of a complex number θjezz =  , which is  

Earth’s Surface 

dc 

Equivalent Earth’s Surface 

dc 

d 

d 
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 θϑ jzezz j +=+= ln)ln(ln)ln(  , θ  in radians. 

Thus, for example, ( )
4

325ln)325325ln( πjj −=− = 5.78 – j0.785. 

To be consistent with the perfect Earth case (i.e., 0, →∞→ δσ ), the real part of the natural 
logarithm must produce the inductive term.  Then, the imaginary term yields the resistance of the 
Earth’s current path, which must be added to the series resistances of the overhead conductors.  
In matrix form, the calculations are made accoding to 
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where complex depth dc  is included in the D terms.  Because of the ωj  multiplier, the real 
terms become positive, frequency-dependent resistances that account for the losses in the Earth.  
Off-diagonal resistances account for the fact that currents in neighboring phases contribute to the 
total voltage drop along the Earth, per meter, as seen by any given phase.  The imaginary terms 
are inductive reactances. 

3.2.3  Resistance and Conductance 

The resistance of conductors is frequency dependent because of the resistive skin effect.  
Usually, however, this phenomenon is small for 50 - 60 Hz.  Conductor resistances are readily 
obtained from tables, in the proper units of Ohms per meter length, and these values, added to 
the equivalent-earth resistances from the previous section, to yield the R used in the transmission 
line model. 

Conductance G is very small for overhead transmission lines and can be ignored. 

3.3 Underground Cables 

Underground cables are transmission lines, and the model previously presented applies.  
Capacitance C tends to be much larger than for overhead lines, and conductance G should not be 
ignored. 

For single-phase and three-phase cables, the capacitances and inductances per phase per meter 
length are 
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a
b

C ro

ln

2 επε
=  Farads per meter length, 

and 

 
a
bL o ln

2π
µ

=  Henrys per meter length, 

where b and a are the outer and inner radii of the coaxial cylinders.  In power cables, 
a
b  is 

typically e (i.e., 2.7183) so that the voltage rating is maximized for a given diameter. 

For most dielectrics, relative permittivity εr = −2 0 2 5. . .  For three-phase situations, it is common 
to assume that the positive, negative, and zero sequence inductances and capacitances equal the 
above expressions.  If the conductivity of the dielectric is known, conductance G can be 
calculated using 

 G C=
σ
ε

 Mhos per meter length. 

3.2.5  Electric Field at Conductor Surface 

Ignoring all other charges, the electric field at a conductor’s surface can be approximated by 

 
r

qE
o

r πε2
=  , 

where r is the radius.  For overhead conductors, this is a reasonable approximation because the 
neighboring line charges are relatively far away.  It is always important to keep the peak electric 
field at a conductor’s surface below 30kV/cm to avoid excessive corono losses. 

Going beyond the above approximation, the Markt-Mengele method provides a detailed 
procedure for calculating the maximum peak subconductor surface electric field intensity for 
three-phase lines with identical phase bundles.  Each bundle has N symmetric subconductors of 
radius r.  The bundle radius is A.  The procedure is 

1. Treat each phase bundle as a single conductor with equivalent radius 

  [ ] NN
eq NrAr /11  −=  . 

2. Find the C(N x N) matrix, including ground wires, using average conductor heights above 
ground.  Kron reduce C(N x N) to C(3 x 3).  Select the phase bundle that will have the 
greatest peak line charge value ( lpeakq ) during a 60Hz cycle by successively placing 
maximum line-to-ground voltage Vmax on one phase, and – Vmax/2 on each of the other 
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two phases.  Usually, the phase with the largest diagonal term in C(3 by 3) will have the 
greatest lpeakq . 

3. Assuming equal charge division on the phase bundle identified in Step 2, ignore 
equivalent line charge displacement, and calculate the average peak subconductor surface 
electric field intensity using 

  
rN

q
E

o

lpeak
peakavg πε2

1
, •=  

4. Take into account equivalent line charge displacement, and calculate the maximum peak 
subconductor surface electric field intensity using 

  



 −+=

A
rNEE peakavgpeak )1(1,max,  . 

 


