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Section 4. Power System Matrices and Matrix Operations

Nodal equations using Kirchhoff's current law.  Admittance matrix and building algorithm.
Gaussian elimination.  Kron reduction.  LU decomposition.  Formation of impedance matrix by
inversion, Gaussian elimination, and direct building algorithm.

4.1 Admittance Matrix

Most power system networks are analyzed by first forming the admittance matrix.  The
admittance matrix is based upon Kirchhoff's current law (KCL), and it is easily formed and very
sparse.

Consider the three-bus network shown in Figure 4.1 that has five branch impedances and one
current source.
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Figure 4.1:  Three-Bus Network

Applying KCL at the three independent nodes yields the following equations for the bus voltages
(with respect to ground):
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Collecting terms and writing the equations in matrix form yields
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or in matrix form,

YV I=  ,

where Y is the admittance matrix, V is a vector of bus voltages (with respect to ground), and I is a
vector of current injections.

Voltage sources, if present, can be converted to current sources using the usual network rules.  If
a bus has a zero-impedance voltage source attached to it, then the bus voltage is already known,
and the dimension of the problem is reduced by one.

A simple observation of the structure of the above admittance matrix leads to the following rule
for building Y:

1. The diagonal terms of Y contain the sum of all branch admittances connected directly to the
corresponding bus.

2. The off-diagonal elements of Y contain the negative sum of all branch admittances connected
directly between the corresponding busses.

These rules make Y very simple to build using a computer program.  For example, assume that the
impedance data for the above network has the following form, one data input line per branch:

 From To Branch Impedance (Entered
Bus Bus as Complex Numbers)

1 0 ZE

1 2 ZA

2 0 ZB

2 3 ZC

3 0 ZD

The following FORTRAN instructions would automatically build Y, without the need of manually
writing the KCL equations beforehand:

COMPLEX Y(3,3),ZB,YB

DATA Y/9 * 0.0/

1 READ(1,*,END=2) NF,NT,ZB
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YB = 1.0 / ZB

C  MODIFY THE DIAGONAL TERMS

IF(NF .NE. 0) Y(NF,NF) = Y(NF,NF) + YB

IF(NT .NE. 0) Y(NT,NT) = Y(NT,NT) + YB

IF(NF .NE. 0 .AND. NT .NE. 0) THEN

C  MODIFY THE OFF-DIAGONAL TERMS

  Y(NF,NT) = Y(NF,NT) - YB

  Y(NT,NF) = Y(NT,NF) - YB

ENDIF

GO TO 1

2 STOP

END

Of course, error checking is needed in an actual computer program to detect data errors and
dimension overruns.  Also, if bus numbers are not compressed (i.e. bus 1 through bus N), then
additional logic is needed to internally compress the busses, maintaining separate internal and
external (i.e. user) bus numbers.

Note that the Y matrix is symmetric unless there are branches whose admittance is direction-
dependent.  In AC power system applications, only phase-shifting transformers have this
asymmetric property.  The normal 30o phase shift in wye-delta transformers creates asymmetry.

4.2 Gaussian Elimination and Backward Substitution

Gaussian elimination is the most common method for solving bus voltages in a circuit for which
KCL equations have been written in the form

I YV=  .

Of course, direct inversion can be used, where

V Y I= −1  ,

but direct inversion for large matrices is computationally prohibitive or, at best, inefficient.

The objective of Gaussian elimination is to reduce the Y matrix to upper-right-triangular-plus-
diagonal form (URT+D), then solve for V via backward substitution.  A series of row operations
(i.e. subtractions and additions) are used to change equation
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in which the transformed Y matrix has zeros under the diagonal.

For illustrative purposes, consider the two equations represented by Rows 1 and 2, which are
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The coefficient of V1 in Row 2 is forced to zero, leaving Row 2 with the desired "reduced" form
of

I y V y V y VN N2 2 2 2 2 3 3 20'
,

'
,

'
,

'= + + + +L  .

Continuing, Row 1 is then used to "zero" the V1 coefficients in Rows 3 through N, one row at a
time.  Next, Row 2 is used to zero the V2  coefficients in Rows 3 through N, and so forth.

After the Gaussian elimination is completed, and the Y matrix is reduced to (URT+D) form, the
bus voltages are solved by backward substitution as follows:
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Continuing for Row j, where j N N= − −2 3 2, , ,L ,
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A simple FORTRAN computer program for solving V in an N-dimension problem using Gaussian
elimination and backward substitution is given below.

COMPLEX Y(N,N),V(N),I(N),YMM

C  GAUSSIAN ELIMINATE Y AND I

NM1    = N - 1

C  PIVOT ON ROW M, M = 1,2,3, ... ,N-1

DO 1 M = 1,NM1

MP1    = M + 1

YMM    = 1.0 / Y(M,M)

C  OPERATE ON THE ROWS BELOW THE PIVOT ROW

DO 1 J = MP1,N

C  THE JTH ROW OF I

I(J)   = I(J) - Y(J,M) *YMM * I(M)

C  THE JTH ROW OF Y, BELOW AND TO THE RIGHT OF THE PIVOT

C  DIAGONAL

DO 1 K = M,N

Y(J,K) = Y(J,K) - Y(J,M) * YMM * Y(M,K)

1 CONTINUE

C  BACKWARD SUBSTITUTE TO SOLVE FOR V

V(N)   = I(N) / Y(N,N)

DO 2 M = 1,NM1

J      = N - M

C  BACKWARD SUBSTITUTE TO SOLVE FOR V, FOR

C  ROW J = N-1,N-2,N-3, ... ,1

V(J)   = I(J)

JP1    = J + 1

DO 3 K = JP1,N

V(J)   = V(J) - Y(J,K) * V(K)
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3 CONTINUE

V(J)   = V(J) / Y(J,J)

2 CONTINUE

STOP

END

One disadvantage of Gaussian elimination is that if I changes, even though Y is fixed, the entire
problem must be re-solved since the elimination of Y determines the row operations that must be
repeated on I.  Inversion and LU decomposition to not have this disadvantage.

4.3 Kron Reduction

Gaussian elimination can be made more computationally efficient by simply not performing
operations whose results are already known.  For example, instead of arithmetically forcing
elements below the diagonal to zero, simply set them to zero at the appropriate times.  Similarly,
instead of dividing all elements below and to the right of a diagonal element by the diagonal
element, divide only the elements in the diagonal row by the diagonal element, make the diagonal
element unity, and the same effect will be achieved.  This technique, which is actually a form of
Gaussian elimination, is known as Kron reduction.

Kron reduction "pivots" on each diagonal element ym m,
'  , beginning with y1 1,  , and continuing

through y N N− −1 1,  .  Starting with Row m = 1, and continuing through Row m = N - 1, the

algorithm for Kron reducing I YV=  is

1. Divide the elements in Row m, that are to the right of the diagonal, by the diagonal

element ym m,
'  . (Note - the elements to the left of the diagonal are already zero).

2. Replace element Im
'  with 

I

y

m

m m

'

,
'

 .

3. Replace diagonal element ym m,
'  with unity.

4. Modify the Y '  elements in rows greater than m and columns greater than m (i.e. below and
to the right of the diagonal element) using

y y y yj k j k j m m k,
'

,
'

,
'

,
'= −  , for j > m, k > m.

5. Modify the I '  elements below the mth row according to

I I y Ij j j m m
' '

,
' '= −  , for j > m.

6. Zero the elements in Column m of Y '  that are below the diagonal element.

A FORTRAN code for Kron reduction is given below.
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COMPLEX Y(N,N),V(N),I(N),YMM

C  KRON REDUCE Y, WHILE ALSO PERFORMING ROW OPERATIONS ON I

      NM1    = N - 1

C  PIVOT ON ROW M, M = 1,2,3, ... ,N-1

DO 1 M = 1,NM1

MP1    = M + 1

YMM    = 1.0 / YMM

C  DIVIDE THE PIVOT ROW BY THE PIVOT

DO 2 K = MP1,N

Y(M,K) = Y(M,K) * YMM

2 CONTINUE

C  OPERATE ON THE I VECTOR

I(M)   = I(M) * YMM

C  SET THE PIVOT TO UNITY

Y(M,M) = 1.0

C  REDUCE THOSE ELEMENTS BELOW AND TO THE RIGHT OF THE PIVOT

DO 3 J = MP1,N

DO 4 K = MP1,N

Y(J,K) = Y(J,K) - Y(J,M) * Y(M,K)

4 CONTINUE

C  OPERATE ON THE I VECTOR

I(J)   = I(J) - Y(J,M) * I(M)

C  SET THE Y ELEMENTS DIRECTLY BELOW THE PIVOT TO ZERO

Y(J,M) = 0.0

3 CONTINUE

1 CONTINUE

4.4 LU Decomposition

An efficient method for solving V in matrix equation YV = I is to decompose Y into the product of
a lower-left-triangle-plus-diagonal (LLT+D) matrix L, and an (URT+D) matrix U, so that YV   = I
can be written as

LUV = I .

The benefits of decomposing Y will become obvious after observing the systematic procedure for
finding V.

It is customary to set the diagonal terms of U equal to unity, so that there are a total of N 2

unknown terms in L and U.  LU = Y in expanded form is then
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Individual l and u terms are easily found by calculating them in the following order:

1. Starting from the top, work down Column 1 of L, finding l1 1,  , then l2 1,  , then l3 1,  , … ,

lN ,1 .  For the special case of Column 1, these elements are l yj j, ,1 1=  , j = 1,2,3, …,N.

2. Starting from the left, work across Row 1 of U, finding u1 2,  , then u1 3,  , then u1 4,  , … ,

u N1,  .  For the special case of Row 1, these elements are u
y

l
k

k
1

1

1 1
,

,

,
=  , k = 2,3,4, …,N.

3. Work down Column (k = 2) of L, finding l2 2,  , then l3 2,  , then l4 2,  , … , lN ,2  , using

l y l u j k k k Nj k j k j m
m

k

m k, , , , , , , , ,= − = + +
=

−

∑
1

1

1 2 L  , Column k k N, 2 ≤ ≤  .

4. Work across Row (k = 2) of U, finding  u2 3,  , then u2 4,  , then u2 5,  , … , u N2,  , using

u

y l u

l
j k k Nk j

k j k m m j
m

k

k k
,

, , ,

,
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1 2 = + , + , ,L  , Row k k N, ( )2 1≤ ≤ − .

5. Repeat Steps 3 and 4, first for Column k of L, then for Row k of U.  Continue for all k =
3,4,5, …,(N-1) for L and U, then for k = N for L.

The procedure given above in Steps 1 - 5 is often referred to as Crout's method.  Note that
elements of L and U never look "backward" for previously used elements of Y.  Therefore, in
order to conserve computer memory, L and U elements can be stored as they are calculated in the
same locations at the corresponding Y elements.  Thus, Crout's method is a memory-efficient "in
situ" procedure.

An intermediate column vector is needed to find V.  The intermediate vector D is defined as

D = UV,

so that
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Since LUV = I, then LD = I.  Vector D is found using forward-substitution from
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which proceeds as follows:
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where D and U are known, then V is found using backward substitution.

An important advantage of LU decomposition over Gaussian elimination or Kron reduction is that
the I vector is not modified during decomposition.  Therefore, once Y has been decomposed into
L and U, I can be modified, and V recalculated, with minimal work, using the forward and
backward substitution steps shown above.
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A special form of L is helpful when Y is symmetric.  In that case, let both L and U have unity
diagonal terms, and define a diagonal matrix D so that

Y = LDU ,

or
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Since Y is symmetric, then Y Y T=  , and LDU LDU U D L U DLT T T T T T= = =  .  Therefore, an

acceptable solution is to allow L U T= .  Incorporating this into the above equation yields

Y

l

l l

l l l

d d l d l d l

d d l d l

d d l

dN N N

N

N

N

N N

=










































1 0 0 0

1 0 0

1 0

0

1

0

0 0

0 0 0

2 1

31 3 2

1 2 3

11 11 2 1 11 31 11 1

2 2 2 2 3 2 2 2 2

3 3 3 3 3

L

L

L

M M M O

L

L

L

L

M M M O M

L

,

, ,

, , ,

, , , , , , ,

, , , , ,

, , ,

,





 ,

which can be solved by working from top-to-bottom, beginning with Column 1 of Y, as follows:

Working down Column 1 of Y,

1,11,1 dy =  ,

1,11,21,21,11,21,2 / so , dyldly ==  ,

y l d l y dj j j j, , , , , ,, /1 1 11 1 1 11= = so  .

Working down Column 2 of Y,

y l d l d d y l d l2 2 2 1 11 2 1 2 2 2 2 2 2 2 1 11 2 1, , , , , , , , , ,,= + = − so  ,

( )y l d l l d l y l d l d j Nj j j j j j, , , , , , , , , , , ,, / ,2 1 11 2 1 2 2 2 2 2 1 11 2 1 2 2 2= + = − < ≤ so   .

Working down Column k of Y,
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y l d l d d y l d lk k k m
m

k

m m k m k k k k k k k m
m

k

m m k m, , , , , , , , , ,,= + = −
=

−

=

−
∑ ∑

1

1

1

1
 so  ,

y l d l l y l d l d k j Nj k j m
m

k

m m k m j k j k j m
m

k

m m k m k k, , , , , , , , , ,, / ,= = −








 < ≤

=

−

=

−
∑ ∑

1

1

1

1
 so  

.

This simplification reduces memory and computation requirements for LU decomposition by
approximately one-half.

4.5 Bifactorization

Bifactorization recognizes the simple pattern that occurs when doing "in situ" LU decomposition.
Consider the first four rows and columns of a matrix that has been LU decomposed according to
Crout's method:

( ) ( )
l y u y l u y l u y l

l y l y l u u y l u l u y l u l

l y l y l u l

11 11 1 2 1 2 11 1 3 1 3 11 1 4 1 4 11

2 1 2 1 2 2 2 2 2 1 1 2 2 3 2 3 2 1 1 3 2 2 2 4 2 4 2 1 1 4 2 2

31 3 1 3 2 3 2 31 1 2 3

, , , , , , , , , , ,

, , , , , , , , , , , , , , , ,

, , , , , ,

/ / /

/ /

= = = =

= = − = − = −

= = − ( ), , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , , , ,

/3 3 3 31 1 3 3 2 2 3 3 4 3 4 31 1 4 3 2 2 4 3 3

4 1 4 1 4 2 4 2 4 1 1 2 4 3 4 3 4 1 1 3 4 2 2 3 4 4 4 4 4 1 1 4 4 2 2 4 4 3 3 4

= − − = − −
= = − = − − = − − −








 y l u l u u y l u l u l

l y l y l u l y l u l u l y l u l u l u











 .

The pattern developed is very similar to Kron reduction, and it can be expressed in the following
steps:

1. Beginning with Row 1, divide the elements to the right of the pivot element, and in the
pivot row, by l1 1, , so that

y
y

y
k

k
1

1

1 1
,

' ,

,
=  , for k = 2,3,4, … , N.

2. Operate on the elements below and to the right of the pivot element using

y y y yj k j k j k,
'

, , ,
'= − 1 1  , for j = 2,3,4, … , N, k = 2,3,4, … , N.

3. Continue for pivots m = 2,3,4, … , (N - 1) using

y
y

y
k m m Nm k

m k

m m
,

' ,
'

,
'

, , , ,= = + +1 2 L  ,

followed by

y y y y j m m N k m m Nj k j k j m m k,
'

,
'

,
'

,
' , , , , ; , , ,= − = + + = + +1 2 1 2L L  ,
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for each pivot m.

When completed, matrix Y' has been replaced by matrices L and U as follows:

Y

l u u u

l l u u

l l l u

l l l lN N N N N

'

, , , ,

, , , ,

, , , ,

, , , ,

=























11 1 2 1 3 1 5

2 1 2 2 2 3 2 5

31 3 2 3 3 3 5

1 2 3

L

L

L

M M M O

L

 ,

and where the diagonal u elements are unity (i.e.  u u u uN N1 1 2 2 3 3 1, , , ,= = = = =  L ).

The corresponding FORTRAN code for bifactorization is

COMPLEX Y(N,N),YMM

C  DO FOR EACH PIVOT M = 1,2,3, ... ,N - 1

NM1     = N - 1

DO 1 M  = 1,NM1

C  FOR THE PIVOT ROW

MP1     = M + 1

YMM     = 1.0 / Y(M,M)

DO 2 K  = MP1,N

Y(M,K)  = Y(M,K) * YMM

2 CONTINUE

C  BELOW AND TO THE RIGHT OF THE PIVOT ELEMENT

DO 3 J   = MP1,N

DO 3 K   = MP1,N

Y(J,K)   = Y(J,K) - Y(J,M) * Y(M,K)

3 CONTINUE

1 CONTINUE

STOP

END

4.6 Shipley-Coleman Inversion

For relatively small matrices, it is possible to obtain the inverse directly.  The Shipley-Coleman
inversion method for inversion is popular because it is easily programmed.  The algorithm is

1. For each pivot (i.e. diagonal term) m, m = 1,2,3, … ,N, perform the following Steps 2 - 4.

2. Kron reduce all elements in Y, above and below, except those in Column m and Row m
using
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mkNkmjNj
y

yy
yy

mm

kmmj
kjkj ≠=≠=−=  ,,,3,2,1 ; ,,,3,2,1 ,

,

'
,

'
,'

,
'
, LL  .

3. Replace pivot element ym m,
'  with its negative inverse, i.e. 

−1

ym m,
'

 .

4. Multiply all elements in Row m and Column m, except the pivot, by ym m,
'  .

The result of this procedure is actually the negative inverse, so that when completed, all terms
must be negated.  A FORTRAN code for Shipley-Coleman is shown below.

COMPLEX Y(N,N),YPIV

C  DO FOR EACH PIVOT M = 1,2,3, ... ,N

DO 1 M  = 1,N

YPIV    = 1.0 / Y(M,M)

C  KRON REDUCE ALL ROWS AND COLUMNS, EXCEPT THE PIVOT ROW

C  AND PIVOT COLUMN

DO 2 J  = 1,N

IF(J .EQ. M) GO TO 2

DO 2 K  = 1,N

IF(K. NE. M) Y(J,K) = Y(J,K) - Y(J,M) * Y(M,K) * YPIV

2 CONTINUE

C  INVERT THE PIVOT ELEMENT AND NEGATE IT

YPIV     = -YPIV

Y(M,M)   = YPIV

C  WORK ACROSS THE PIVOT ROW AND DOWN THE PIVOT COLUMN,

C  MULTIPLYING BY THE NEW PIVOT VALUE

DO 3 K   = 1,N

IF(K .EQ. M) GO TO 3

Y(M,K) = Y(M,K) * YPIV

Y(K,M) = Y(K,M) * YPIV

3 CONTINUE

1 CONTINUE

C  NEGATE THE RESULTS

DO 4 J   = 1,N

DO 4 K   = 1,N

Y(J,K)   = -Y(J,K)

4 CONTINUE

STOP

END

The order of the number of calculations for Shipley-Coleman is N 3  .
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4.7 Impedance Matrix

The impedance matrix is the inverse of the admittance matrix, or

Z Y= −1  ,

so that

V ZI=  .

The reference bus both Y and Z is ground.  Although the impedance matrix can be found via
inversion, complete inversion is not common for matrices with more than a few hundred rows and
columns because of the matrix storage requirements.  In those instances, Z elements are usually
found via Gaussian elimination, Kron reduction, or, less commonly, by a direct building algorithm.
If only a few of the Z elements are needed, then Gaussian elimination or Kron reduction are best.
Both methods are described in following sections.

4.8 Physical Significance of Admittance and Impedance Matrices

 The physical significance of the admittance and impedance matrices can be seen by examining the
basic matrix equations I YV=  and V Y I ZI= =−1  .  Expanding the jth row of I YV=  yields

I y Vj j k k
k

N

=
=

∑ ,
1

 .  Therefore,

kmNmmVk

j
kj V

I
y

≠==
=

,,,2,1,0
,

L

 ,

where, as shown in Figure 4.2, all busses except k are grounded, Vk  is a voltage source attached
to bus k, and I j  is the resulting current injection at (i.e. flowing into) bus j.  Since all busses that

neighbor bus k are grounded, the currents induced by Vk  will not get past these neighbors, and the
only non-zero injection currents I j  will occur at the neighboring busses.  In a large power system,

most busses do not neighbor any arbitrary bus k.  Therefore, Y consists mainly of zeros (i.e. is
sparse) in most power systems.
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-

Vk

Bus jApplied Voltage

Power System

Ij

All Other Busses
Grounded

at Bus k

Induced Current at

A

Figure 4.2:  Measurement of Admittance Matrix Term y j k,

Concerning Z, the kth row of V Y I ZI= =−1  yields ∑
=

=
N

j
jjkk IzV

1
,  .  Hence,

kmNmmIk

j
kj I

V
z

≠==
=

,,,2,1,0
,

L

 ,

where, as shown in Figure 4.3, I k  is a current source attached to bus k, V j  is the resulting voltage

at bus j, and all busses except k are open-circuited.  Unless the network is disjoint, then current
injection at one bus, when all other busses open-circuited, will raise the potential everywhere in
the network.  For that reason, Z tends to be full.

Power System

All Other Busses

Open Circuited

Applied Current at
Induced Voltage

+

-

V

Bus k
at Bus j

Ik
Vj

Figure 4.3:  Measurement of Impedance Matrix Term z j k,

4.9 Formation of the Impedance Matrix via Gaussian Elimination, Kron Reduction,
and LU Decomposition

4.9.1  Gaussian Elimination

An efficient method of fully or partially inverting a matrix is to formulate the problem using
Gaussian elimination.  For example, given

YZ I=  ,
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where Y is a matrix of numbers, Z is a matrix of unknowns, and I is the identity matrix, the
objective is to Gaussian eliminate Y, while performing the same row operations on I, to obtain the
form

′ = ′Y Z I  ,

where Y' is in (URT+D) form.  Then, individual columns of Z can then be solved using backward
substitution, one at a time.  This procedure is also known as the augmentation method, and it is
illustrated as follows:

Y is first Gaussian eliminated, as shown in a previous section, while at the same time performing
identical row operations on I.  Afterward, the form of ′ = ′Y Z I  is

=


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where Rows 1 of Y' and I' are the same as in Y and I.  The above equation can be written in
abbreviated column form as

[ ] [ ]

y y y y

y y y

y y

y

Z Z Z Z I I I I

N

N

N

N N

N N

11 1 2 1 3 1

2 2 2 3 2

3 3 3 1 2 3 1 2 3

0

0 0

0 0 0

, , , ,
'

,
'

,
'

,
'

,
'

,

'
,

' ' ' '

L

L

L

M M M O M

L

L L























=  ,

where the individual column vectors Zi and Ii have dimension N x 1.  The above equation can be
solved as N separate subproblems, where each subproblem computes a column of Z.  For
example, the kth column of Z can be computed by applying backward substitution to
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Each column of Z is solved independently from the others.

4.9.2  Kron Reduction

If Kron reduction, the problem is essentially the same, except that Row 1 of the above equation is
divided by y1 1,

'  , yielding
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Because backward substitution can stop when the last desired z element is computed, the process
is most efficient if the busses are ordered so that the highest bus numbers (i.e. N, N-1, N-2, etc.)
correspond to the desired z elements.  Busses can be ordered accordingly when forming Y to take
advantage of this efficiency.

4.9.3  LU Decomposition

Concerning LU decomposition, once the Y matrix has been decomposed into L and U, then we
have

YZ LUZ I= = ,

where I is the identity matrix.  Expanding the above equation as L UZ I=  yields

=
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The special structure of the above equation shows that, in general, UZ must be (LLT+D) in form.
UZ can be found by using forward substitution on the above equation, and then Z can be found,
one column at a time, by using backward substitution on  UZ U Z=  , which in expanded form
is
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4.10 Direct Impedance Matrix Building and Modification Algorithm

The impedance matrix can be built directly without need of the admittance matrix, if the physical
properties of Z are exploited.  Furthermore, once Z has been built, no matter which method was
used, it can be easily modified when network changes occur.  This after-the-fact modification
capability is the most important feature of the direct impedance matrix building and modification
algorithm.

The four cases to be considered in the algorithm are

Case 1. Add a branch impedance between a new bus and the reference bus.

Case 2. Add a branch impedance between a new bus and an existing non-reference bus.

Case 3. Add a branch impedance between an existing bus and the reference bus.

Case 4. Add a branch impedance between two existing non-reference busses.

Direct formation of an impedance matrix, plus all network modifications, can be achieved through
these four cases.  Each of the four is now considered separately.
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4.10.1  Case 1, Add a Branch Impedance Between a New Bus and the Reference Bus

Case 1 is applicable in two situations.  First, it is the starting point when building a new
impedance matrix.  Second, it provides (as does Case 2) a method for adding new busses to an
existing impedance matrix.

Both situations applicable to Case 1 are shown in Figure 4.4.  The starting-point situation is on
the left, and the new-bus situation is on the right.

Power System
N Busses

Zadd

Bus 1

Reference
Bus

Zadd

Bus (N+1)

Situation 1 Situation 2

Reference
Bus

Figure 4.4:  Case 1, Add a Branch Impedance Between a New Bus and the Reference Bus

The impedance matrices for the two situations are

Situation 1 Z Zadd1 1, =  ,

Situation 2:
[ ]

[ ] [ ]
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1 1
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0
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0
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,
, M

L

 .

The effect of situation 2 is simply to augment the existing Z N N,  by a column of zeros, a row of
zeros, and a new diagonal element Zadd.  New bus (N+1) is isolated from the rest of the system.

4.10.2  Case 2, Add a Branch Impedance Between a New Bus and an Existing Non-Reference
Bus

Consider Case 2, shown in Figure 4.5, where a branch impedance Zadd is added from existing
non-reference bus j to new bus (N+1).  Before the addition, the power system has N busses, plus
a reference bus (which is normally ground), and an impedance matrix Z N N,  .



Grady, /www.ece.utexas.edu/~grady/, 10/25/98

4 - 20

+

-

Vk

Bus j

Power System

at Bus k

A

Induced Voltage

Injected Current at

I(N+1)

Zadd
New Bus (N+1)

Figure 4.5:  Case 2, Add a Branch Impedance Between New Bus (N+1) and Existing Non-
Reference Bus j

Since all of the current I N +1 injected at new bus (N+1) flows through Zadd and into Bus j, the
original N power system busses cannot distinguish between current injections I j  and I N +1.

Therefore,

)1( ,
1

+≠=
+

Nk
I

V

I

V

j

k

N

k

∂
∂

∂
∂

 ,

meaning that impedance matrix elements zk j,  and z k N, +1 are identical for busses k N≠ +( )1 , and

that the effect on the impedance matrix is to augment it with an additional Row (N+1) that is
identical to Row j.

Likewise, since bus (N+1) is an open-circuited radial bus stemming from bus j, a current injected
at another bus k creates identical voltage changes on busses j and (N+1).  This means that

)1( ,1 +≠=+ Nk
I

V

I

V

k

j

k

N

∂

∂

∂
∂

 ,

so that the effect on the impedance matrix is to augment it with an additional Column (N+1) that
is identical to Column j.

Next, due to the fact that all of injection current I N N+ +1 1,  passes through new branch impedance
Zadd, the relationship between Vj  and VN +1   is

Zadd
I

V

I

V

N

j

N

N +=
++

+

11

1

∂

∂

∂
∂

 ,

so that the (N+1) diagonal term of the impedance matrix becomes

Zaddzz jjNN +=++ ,1,1  ,

where z j j,  is the jth diagonal term of Z NxN  .



Grady, /www.ece.utexas.edu/~grady/, 10/25/98

4 - 21

Summarizing, the total effect of Case 2 is to increase the dimension of the impedance matrix by
one row and column according to

[ ] [ ]
[ ] [ ] 











+=++

11,1,

1,,
1,1  of  Row

 of Column 

xjjxNNN

NxNNNxNNN
NN ZaddzZj

ZjZ
Z  .

4.10.3  Case 3, Add a Branch Impedance Between an Existing Bus and the Reference Bus

Now, consider Case 3, where a new impedance-to-reference tie Zadd is added to existing Bus j.
The case is handled as a two-step extension of Case 2, as shown in Figure 4.6.  First, extend Zadd
from Bus j to fictitious Bus (N+1), as was done in Case 2.  Then, tie fictitious Bus (N+1) to the
reference bus, and reduce the size of the augmented impedance matrix back to (N x N).

Bus j

Power System

New Bus (N+1)
Step 1 Step 2

Bus j

Power System

Zadd

Zadd

Figure 4.6:  Case 3.  Two-Step Procedure for Adding Branch Impedance Zadd from Existing Bus
j to the Reference Bus

Step 1 creates the augmented Z N N+ +1 1,  matrix shown in Case 2.  The form of equation

NNNN IZV 1,11 +++ =  is
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0
 ,

where REFjjREF IZaddzV  and , , , +  are scalars.  Defining the row and column vectors as Rj  and

C j  , respectively, yields
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At this point, scalar IREF  can be eliminated by expanding the bottom row to obtain
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Zaddz
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I
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REF +

−=
,

111
 .
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Substituting into the top N rows yields

( ) ( ) 1
,

1
,

11
1

 
1

 Nxjj
jj

NxNNxjj
jj

NxNxNNx IRC
Zaddz

ZIRC
Zaddz

IZV 










+
−=

+
−=  ,

or

1
'

1 NxNxNNx IZV =  .

Expanding C Rj j  gives
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so that the individual elements of the modified impedance matrix ZNx 1
'  can be written as

NkNi
Zaddz

zz
zz

jj

kjji
kiki ,,3,2,1 ;,,3,2,1 , 

,

,,
,

'
, LL ==

+
−=  .

Note that the above equation corresponds to Kron reducing the augmented impedance matrix,
using element z N N+ +1 1,  as the pivot.

4.10.4  Case 4, Add a Branch Impedance Between Two Existing Non-Reference Busses

The final case to be considered is that of adding a branch between existing busses j and k in an N-
bus power system that has impedance matrix Z N N,  .  The system and branch are shown in Figure
4.7.
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Power System

Zadd

Reference Bus

Bus j

Ij

Ib

Ij - Ib

Bus k

IkIk + Ib

Ib

with N Busses

Figure 4.7:  Case 4, Add Branch Impedance Zadd between Existing Busses j and k

As seen in the figure, the actual current injected into the system via Bus j is bj II −  , and the

actual injection via Bus k is bk II +  , where

Zadd

VV
I

kj
b

−
=  , or ( ) bkj IZaddVV =−  .

The effect of the branch addition on the voltage at arbitrary bus m can be found by substituting
the true injection currents at busses j and k into IZV NN ,= , yielding

( ) ++−+++= LL bjjmmmmm IIzIzIzIzV ,33,22,11,

( ) NNmbkkm IzIIz ,, +++ L  ,

or

+++++++= LLL kkmjjmmmmm IzIzIzIzIzV ,,33,22,11,

( ) bkmjmNNm IzzIz ,,, −−+L  .

For busses j and k specifically,
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,,

,,
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L

L  .

Then, kj VV −  gives
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( ) ( ) ( ) ( )( ) LL     ,,33,3,22,2,11,1, +−−++−+−+−=− bjjkjjkjkjkjkj IIzzIzzIzzIzzVV

( )( ) ( ) NNkNjbkkkkj IzzIIzz ,,,,   −+++− L  .

Substituting in ( )V V Zadd Ij k b− =  and combining terms then yields

( ) ( ) ( ) ( ) LL       0 ,,33,3,22,2,11,1, +−++−+−+−= jjkjjkjkjkj IzzIzzIzzIzz

( ) ( ) ( ) bjkkjkkjjNNkNjkkkkj IZaddzzzzIzzIzz +−−+−−++− ,,,,,,,,   L  .

All of the above effects can be included as an additional row and column in equation IZV NN ,=
as follows:
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As was done in Case 3, the effect of the augmented row and column of the above equation can be
incorporated into a modified impedance matrix by using Kron reduction, where element z N N+ +1 1,  is
the pivot, yielding

( )( )
Zaddzzzz

zzzz
zz

jkkjkkjj

mkmjkiji
mimi +−−+

−−
−=

,,,,

,,,,
,

'
,   .

4.10.5  Application Notes

Once an impedance matrix is built, no matter which method is used, the modification algorithm
can very easily adjust Z for network changes.  For example, a branch outage can be effectively
achieved by placing an impedance, of the same but negative value, in parallel with the actual
impedance, so that the impedance of the parallel combination is infinite.

4.11 Example Code YZBUILD for Building Admittance Matrix and Impedance Matrix

c
c  Program YZBUILD for EE394J.  Reads bdat and ldat (positive
c  sequence) files in PCFLO fixed column format.  Builds the
c  admittance and impedance matrices.  Impedance matrix is
c  produced in two ways - lu decomposition (zbus.lu), and gaussian
c  elimination (zbus.gau).
c
c  YZBUILD is intended for use with positive sequence short
c  circuit BDAT and LDAT files.  Therefore, positive sequence
c  subtransient impedances should be included in BDAT.
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c
c  Mack Grady.  See date below in variable versio
c
      character*6 versio/'981025'/

complex ybus,yline,ycap,ctap,yii,ykk,yik,yki,zsub
      complex lmat,umat,unity,czero,ytest,ysave,diff,uz,
     1 uzelem,zbus,elem,alpha
c
c  Dimensioned here for up to 100 busses
c
      dimension ybus(100,100),nbext(100),nbint(9999)
      dimension lmat(100,100),umat(100,100),ysave(100,100),
     1 uz(100,100),zbus(100,100),unity(100,100)
      data mxint/100/,mxext/9999/,nbus/0/, nbint/9999 * 0/, iout/17/,
     1 nbext/100 * 0/,czero /(0.0,0.0)/,eps4/1.0e-04/,
     2 eps6/1.0e-06/,eps9/1.0e-09/
      data ybus  /10000 * (0.0,0.0)/
      data zbus  /10000 * (0.0,0.0)/
      data uz    /10000 * (0.0,0.0)/
      data unity /10000 * (0.0,0.0)/
c
      pi = 4.0 * atan(1.0)
      dr = 180.0 / pi
      open(unit=2,file='ybus.yzb')
      open(unit=1,file='bdat.yzb')
      open(unit=17,file='exlog.yzb')
      write(6,*) 'Program YZBUILD, Version ',versio
      write(2,*) 'Program YZBUILD, Version ',versio
      write(iout,*) 'Program YZBUILD, Version ',versio
      write(6,*) 'Read bus data from PCFLO fixed column format ',
     1 'file BDAT.YZB'
      write(6,*) 'number        q shunt      rsubtrans',
     1 '      xsubtrans'
      write(2,*) 'Read bus data from PCFLO fixed column format ',
     1 'file BDAT.YZB'
      write(2,*) 'number        q shunt      rsubtrans',
     1 '      xsubtrans'
      write(iout,*) 'Read bus data from PCFLO fixed column format ',
     1 'file BDAT.YZB'
      write(iout,*) 'number        q shunt      rsubtrans',
     1 '      xsubtrans'
c
c  read the bdat file
c
    1 read(1,1001,end=5) nb,qshunt,rsub,xsub
 1001 format(i4,t58,f8.0,t90,2f8.0)
      if(nb .eq. 0) go to 5
      write(6,1002) nb,qshunt,rsub,xsub
      write(2,1002) nb,qshunt
      write(iout,1002) nb,qshunt,rsub,xsub
 1002 format(i7,5x,f10.2,2(f15.4))
      if(nb .le. 0 .or. nb .gt. mxext) then
        write(6,*) 'Illegal bus number - stop'
        write(2,*) 'Illegal bus number - stop'
        write(iout,*) 'Illegal bus number - stop'
        stop
      endif
      nbus = nbus + 1
      if(nbus .gt. mxint) then
        write(6,*) 'Too many busses - stop'
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        write(2,*) 'Too many busses - stop'
        write(iout,*) 'Too many busses - stop'
        stop
      endif

zsub        = cmplx(rsub,xsub)
if(cabs(zsub) .gt. eps6) then
  if(rsub .lt. 0.0 .or. xsub .lt. 0.0) then

          write(6,*) 'Illegal rsubtrans or xsubtrans - stop'
          write(2,*) 'Illegal rsubtrans or xsubtrans - stop'
          write(iout,*) 'Illegal rsubtrans or xsubtrans - stop'

  endif
endif

      nbext(nbus) = nb
      nbint(nb)   = nbus
      ycap        = cmplx(0.0,-qshunt / 100.0)
      ybus(nbus,nbus) = ybus(nbus,nbus) + ycap

if(cabs(zsub) .gt. eps6) then
      ybus(nbus,nbus) = ybus(nbus,nbus) + 1.0 / zsub

endif
      go to 1
    5 close(unit=1,status='keep')
c
      open(unit=1,file='ldat.yzb')
      write(6,*) 'Read line/transformer data from PCFLO fixed column ',
     1 'format file LDAT.YZB'
      write(6,*) ' from     to           r           x',
     1 '      charge         tap  phase shift'
      write(2,*) 'Read line/transformer data from PCFLO fixed column ',
     1 'format file LDAT.YZB'
      write(2,*) ' from     to           r           x',
     1 '      charge         tap  phase shift'
      write(iout,*) 'Read line/transformer data from PCFLO fixed ',

1 'column format file LDAT.YZB'
      write(iout,*) ' from     to           r           x',
     1 '      charge         tap  phase shift'
c
c  read the ldat file
c
   10 read(1,1003,end=15) nfrom,nto,r,x,charge,tap,phase
 1003 format(2i4,2x,3f12.0,t76,f7.0,f8.0)
      if(nfrom .eq. 0 .and. nto .eq. 0) go to 15
      write(6,1004) nfrom,nto,r,x,charge,tap,phase
      write(2,1004) nfrom,nto,r,x,charge,tap,phase
      write(iout,1004) nfrom,nto,r,x,charge,tap,phase
 1004 format(1x,i5,2x,i5,4(2x,f10.4),3x,f10.2)
      if(nfrom .lt. 0 .or. nfrom .gt. mxext .or. nto .lt. 0
     1 .or. nto .gt. mxext) then
        write(6,*) 'Illegal bus number - stop'
        write(2,*) 'Illegal bus number - stop'
        write(iout,*) 'Illegal bus number - stop'
        stop
      endif
      if(nfrom .eq. nto) then
        write(6,*) 'Same bus number given on both ends - stop'
        write(2,*) 'Same bus number given on both ends - stop'
        write(iout,*) 'Same bus number given on both ends - stop'
        stop
      endif
      if(r .lt. -eps6 .or. tap .lt. -eps6) then
        write(6,*) 'Illegal resistance or tap - stop'
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        write(2,*) 'Illegal resistance or tap - stop'
        write(iout,*) 'Illegal resistance or tap - stop'
        stop
      endif
      if(charge .lt. -eps6) then
        write(6,*) 'Line charging should be positive'
        write(2,*) 'Line charging should be positive'
        write(iout,*) 'Line charging should be positive'
        stop
      endif
      if(nfrom .ne. 0) then
        nfrom = nbint(nfrom)
        if(nfrom .eq. 0) then
          write(6,*) 'Bus not included in file bdat - stop'
          write(2,*) 'Bus not included in file bdat - stop'
          write(iout,*) 'Bus not included in file bdat - stop'
          stop
        endif
      endif
      if(nto   .ne. 0) then
        nto   = nbint(nto)
        if(nto .eq. 0) then
          write(6,*) 'Bus not included in file bdat - stop'
          write(2,*) 'Bus not included in file bdat - stop'
          write(iout,*) 'Bus not included in file bdat - stop'
          stop
        endif
      endif
      phase = phase / dr
      if(abs(phase) .gt. eps6 .and. abs(tap) .lt. eps6) tap = 1.0
      if((nfrom .eq. 0 .or. nto .eq. 0) .and. tap .gt. eps6) then
        write(6,*) 'Shunt elements should not have taps - stop'
        write(2,*) 'Shunt elements should not have taps - stop'
        write(iout,*) 'Shunt elements should not have taps - stop'
        stop
      endif
      if(tap .gt. eps6 .and. charge .gt. eps6) then
        write(6,*) 'Transformers should not have line charging'
        write(2,*) 'Transformers should not have line charging'
        write(iout,*) 'Transformers should not have line charging'
        stop
      endif
      yline = cmplx(r,x)
      if(cabs(yline) .lt. eps6) go to 10
      yline = 100.0 / yline
      ycap  = cmplx(0.0,charge / 200.0)
c
c  the line charging terms
c
      if(nfrom .ne. 0) ybus(nfrom,nfrom) = ybus(nfrom,nfrom) + ycap
      if(nto   .ne. 0) ybus(nto  ,nto  ) = ybus(nto  ,nto  ) + ycap
c
c  shunt elements
c
      if(nfrom .ne. 0 .and. nto   .eq. 0) ybus(nfrom,nfrom) =
     1 ybus(nfrom,nfrom) + yline
      if(nfrom .eq. 0 .and. nto   .ne. 0) ybus(nto  ,nto  ) =
     1 ybus(nto  ,nto  ) + yline
c
c  transmission lines



Grady, /www.ece.utexas.edu/~grady/, 10/25/98

4 - 28

c
      if(nfrom .ne. 0 .and. nto .ne. 0 .and. tap .lt. eps6) then
        ybus(nfrom,nto  ) = ybus(nfrom,nto  ) - yline
        ybus(nto  ,nfrom) = ybus(nto  ,nfrom) - yline
        ybus(nfrom,nfrom) = ybus(nfrom,nfrom) + yline
        ybus(nto  ,nto  ) = ybus(nto  ,nto  ) + yline
      endif
c
c  transformers
c
      if(nfrom .ne. 0 .and. nto .ne. 0 .and. tap .ge. eps6) then
        ctap = tap * cmplx(cos(phase),sin(phase))
        yii  = yline / conjg(ctap) * (1.0 / ctap - 1.0)
        ykk  = yline * (1.0 - 1.0 / ctap)
        yik  = yline / conjg(ctap)
        yki  = yline / ctap
        ybus(nfrom,nfrom) = ybus(nfrom,nfrom) + yii + yik
        ybus(nto  ,nto  ) = ybus(nto  ,nto  ) + ykk + yki
        ybus(nfrom,nto  ) = ybus(nfrom,nto  ) - yik
        ybus(nto  ,nfrom) = ybus(nto  ,nfrom) - yki
      endif
      go to 10
c
c  write the nonzero ybus elements to file ybus
c
   15 close(unit=1,status='keep')
      write(6,*) 'Nonzero elements of ybus (in rectangular form)'
      write(2,*) 'Nonzero elements of ybus (in rectangular form)'
      write(iout,*) 'Nonzero elements of ybus (in rectangular form)'
      write(6,*) '-internal-   -external-'
      write(2,*) '-internal-   -external-'
      write(iout,*) '-internal-   -external-'
      ny = 0
      do 20 j = 1,nbus
      do 20 k = 1,nbus
      ysave(j,k) = ybus(j,k)
      if(cabs(ybus(j,k)) .lt. eps9) go to 20
      ny = ny + 1
      write(6,1005) j,k,nbext(j),nbext(k),ybus(j,k)
      write(2,1005) j,k,nbext(j),nbext(k),ybus(j,k)
      write(iout,1005) j,k,nbext(j),nbext(k),ybus(j,k)
 1005 format(2i5,3x,2i5,2e20.8)
   20 continue
      close(unit=2,status='keep')
      fill = ny / float(nbus * nbus)
      write(iout,525) ny,fill
      write(6,525) ny,fill
  525 format(/1x,'Number of nonzero elements in YBUS.YZB = ',i5/1x,
     1'percent fill = ',2pf8.2/)
c
c  bifactorization - replace original ybus with lu
c
      nm1 = nbus - 1
      do 30 ipiv = 1,nm1
      write(iout,530) ipiv
      write(6,530) ipiv
  530 format(1x,'LU.YZB pivot element = ',i5)
      ipiv1 = ipiv + 1
      alpha = 1.0 / ybus(ipiv,ipiv)
      do 32 k = ipiv1,nbus
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      ybus(ipiv,k) = alpha * ybus(ipiv,k)
   32 continue
      do 34 j = ipiv1,nbus
      alpha   = ybus(j,ipiv)
      do 34 k = ipiv1,nbus
      ybus(j,k) = ybus(j,k) - alpha * ybus(ipiv,k)
   34 continue
   30 continue
      write(iout,530) nbus
      write(iout,532)
      write(6,530) nbus
      write(6,532)
  532 format(/1x,'Nonzero LU.YZB follows'/)
      open(unit=4,file='lu.yzb')
      nlu = 0
      do 35 j = 1,nbus
      do 35 k = 1,nbus
      ymag = cabs(ybus(j,k))
      if(ymag .le. eps9) go to 35
      nlu = nlu + 1
      write(iout,1005) j,k,nbext(j),nbext(k),ybus(j,k)
      write(6,1005) j,k,nbext(j),nbext(k),ybus(j,k)
      write(4,1005) j,k,nbext(j),nbext(k),ybus(j,k)
   35 continue
      fill = nlu / float(nbus * nbus)
      write(iout,535) nlu,fill
      write(6,535) nlu,fill
  535 format(/1x,'Number of nonzero elements in LU.YZB = ',i5/1x,
     1'percent fill = ',2pf8.2/)
      close(unit=4,status='keep')
c
c  check l times u
c
      write(iout,560)
      write(6,560)
  560 format(1x,'LU.YZB .ne. YBUS.YZB follows'/)
      do 36 j = 1,nbus
      do 37 k = 1,nbus
      lmat(j,k) = czero
      umat(j,k) = czero
      if(j .ge. k) lmat(j,k) = ybus(j,k)
      if(j .lt. k) umat(j,k) = ybus(j,k)
   37 continue
      umat(j,j) = 1.0
   36 continue
      do 38 j = 1,nbus
      do 38 k = 1,nbus
      ytest   = czero
      do 39 l = 1,k
      ytest = ytest + lmat(j,l) * umat(l,k)
   39 continue
      diff = ysave(j,k) - ytest
      if(cabs(diff) .gt. eps4) then

  write(iout,1005) j,k,nbext(j),nbext(k)
     1 ,diff

  write(6,1005) j,k,nbext(j),nbext(k)
     1 ,diff

endif
   38 continue
c
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c  form uz (urt + diag)
c
      write(iout,536) nbus

write(6,536) nbus
  536 format(1x,'UZ.YZB pivot = ',i5)
      uz(nbus,nbus) = 1.0 / ybus(nbus,nbus)
      nm1 = nbus - 1
      do 40 kdum = 1,nm1
      k   = nbus - kdum
      write(iout,536) k
      write(6,536) k
      uz(k,k) = 1.0 / ybus(k,k)
      kp1     = k + 1
      do 41 j = kp1,nbus
      uzelem  = czero
      jm1     = j - 1
      alpha   = 1.0 / ybus(j,j)
      do 42 l = k,jm1
      uzelem  = uzelem - ybus(j,l) * uz(l,k)
   42 continue
      uz(j,k) = uzelem * alpha
   41 continue
   40 continue
      write(iout,537)
      write(6,537)
  537 format(/1x,'Nonzero UZ.YZB follows'/)
      open(unit=8,file='uz.yzb')
      nlu     = 0
      do 45 j = 1,nbus
      do 45 k = 1,nbus
      ymag    = cabs(uz(j,k))
      if(ymag .le. eps9) go to 45
      nlu     = nlu + 1
      write(iout,1005) j,k,nbext(j),nbext(k),uz(j,k)
      write(6,1005) j,k,nbext(j),nbext(k),uz(j,k)
      write(8,1005) j,k,nbext(j),nbext(k),uz(j,k)
   45 continue
      fill = nlu / float(nbus * nbus)
      write(iout,545) nlu,fill
      write(6,545) nlu,fill
  545 format(/1x,'Number of nonzero elements in UZ.YZB = ',i5/1x,
     1'percent fill = ',2pf8.2/)
      close(unit=8,status='keep')
c
c  form z
c
      open(unit=10,file='zbuslu.yzb')
      do 50 kdum = 1,nbus
      k   = nbus - kdum + 1
      write(iout,550) k
      write(6,550) k
  550 format(1x,'ZUBSLU.YZB column = ',i5)
      do 51 jdum = 1,nbus
      j   = nbus - jdum + 1
      zbus(j,k) = czero
      if(j .ge. k) zbus(j,k) = uz(j,k)
      if(j .eq. nbus) go to 51
      jp1 = j + 1
      do 52 l    = jp1,nbus
      zbus(j,k) = zbus(j,k) - ybus(j,l) * zbus(l,k)
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   52 continue
   51 continue
   50 continue
      write(iout,565)
      write(6,565)
  565 format(/1x,'Writing ZBUSLU.YZB to disk')
      do 80 j = 1,nbus
      do 80 k = 1,nbus
      write(10,1005) j,k,nbext(j),nbext(k),zbus(j,k)
   80 continue
      close(unit=10,status='keep')
c
c  check ybus * zbus
c
      write(iout,5010)
      write(6,5010)
 5010 format(/1x,'Nonzero YBUS.YZB * ZBUSLU.YZB follows')
      do 60 j = 1,nbus
      do 60 k = 1,nbus
      elem    = czero
      do 61 l = 1,nbus
      elem    = elem + ysave(j,l) * zbus(l,k)
   61 continue
      ymag    = cabs(elem)
      if(ymag .gt. eps4) then

  write(iout,1005) j,k,nbext(j),nbext(k),elem
  write(6,1005) j,k,nbext(j),nbext(k),elem
endif

   60 continue
c
c  copy ysave back into ybus, and zero zbus
c
      do 70 j = 1,nbus
      unity(j,j) = 1.0
      do 70 k = 1,nbus
      ybus(j,k) = ysave(j,k)
      zbus(j,k) = czero
   70 continue
c
c  gaussian eliminate ybus, while performing the same operations
c  on the unity matrix
c
      nm1 = nbus - 1
      do 71 ipiv = 1,nm1
      write(iout,561) ipiv
      write(6,561) ipiv
  561 format(1x,'Gaussian elimination YBUS.YZB pivot = ',i5)
      alpha      = 1.0 / ybus(ipiv,ipiv)
      ipp1 = ipiv + 1
c
c  pivot row operations for ybus and unity
c
      do 72 k = 1,nbus
      if(k .gt. ipiv) then
        ybus(ipiv,k)  = ybus(ipiv,k)  * alpha
        else
        unity(ipiv,k) = unity(ipiv,k) * alpha
      endif
   72 continue
c
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c  pivot element
c
      ybus(ipiv,ipiv) = 1.0
c
c  kron reduction of ybus and unity below the pivot row and to
c  the right of the pivot column
c
      do 74 j = ipp1,nbus
      alpha   = ybus(j,ipiv)
      do 74 k = 1,nbus
      if(k .gt. ipiv)
     1 ybus(j,k)  = ybus(j,k)  - alpha * ybus(ipiv,k)
      if(k .lt. ipiv)
     1 unity(j,k) = unity(j,k) - alpha * unity(ipiv,k)
   74 continue
c
c  elements directly below the pivot element
c
      do 76 j = ipp1,nbus
      alpha   = ybus(j,ipiv)
      ybus(j,ipiv)  = ybus(j,ipiv)  - alpha * ybus(ipiv,ipiv)
      unity(j,ipiv) = unity(j,ipiv) - alpha * unity(ipiv,ipiv)
   76 continue
   71 continue
c
c  last row
c
      write(iout,561) nbus
      write(6,561) nbus
      alpha   = 1.0 / ybus(nbus,nbus)
      do 77 k = 1,nbus
      unity(nbus,k) = unity(nbus,k) * alpha
   77 continue
      ybus(nbus,nbus) = 1.0
      ngy = 0
      ngu = 0
      write(iout,562)
      write(6,562)
  562 format(/1x,'Writing gaussian eliminated YBUS.YZB and ',
     1 'UNITYMAT.YZB to disk')
      open(unit=12,file='ybusred.yzb')
      open(unit=13,file='unitymat.yzb')
      do 78 j = 1,nbus
      do 78 k = 1,nbus
      ymag = cabs(ybus(j,k))
      if(ymag .ge. eps9) then
        write(12,1005) j,k,nbext(j),nbext(k),ybus(j,k)
        ngy   = ngy + 1
      endif
      umag = cabs(unity(j,k))
      if(umag .ge. eps9) then
        write(13,1005) j,k,nbext(j),nbext(k),unity(j,k)
        ngu   = ngu + 1
      endif
   78 continue
      close(unit=12,status='keep')
      close(unit=13,status='keep')
      fill = ngy / float(nbus * nbus)
      write(iout,555) ngy,fill
      write(6,555) ngy,fill
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  555 format(/1x,'Number of nonzero elements in gaussian eliminated',
     1' YBUZ.YZB = ',i5/1x,
     1'percent fill = ',2pf8.2/)
      fill = ngu / float(nbus * nbus)
      write(iout,556) ngu,fill
      write(6,556) ngu,fill
  556 format(/1x,'Number of nonzero elements in gaussian eliminated',
     1' UNITYMAT.YZB = ',i5/1x,
     1'percent fill = ',2pf8.2/)
c
c  back substitute to find z
c
      do 81 k = 1,nbus
      zbus(nbus,k) = unity(nbus,k)
   81 continue
      do 82 jdum = 2,nbus
      j = nbus - jdum + 1
      write(iout,550) j
      write(6,550) j
      do 82 kdum = 1,nbus
      k = nbus - kdum + 1
      zbus(j,k) = unity(j,k)
      jp1 = j + 1
      do 83 l = jp1,nbus
      zbus(j,k) = zbus(j,k) - ybus(j,l) * zbus(l,k)
   83 continue
   82 continue
      write(iout,565)
      write(6,565)
      open(unit=11,file='zbusgau.yzb')
      do 84 j = 1,nbus
      do 84 k = 1,nbus
      write(11,1005) j,k,nbext(j),nbext(k),zbus(j,k)
   84 continue
      close(unit=11,status='keep')
c
c  check ybus * zbus
c
      write(iout,5030)
      write(6,5030)
 5030 format(/1x,'Nonzero YBUS.YZB * ZBUSGAU.YZB follows')
      do 85 j = 1,nbus
      do 85 k = 1,nbus
      elem    = czero
      do 86 l = 1,nbus
      elem    = elem + ysave(j,l) * zbus(l,k)
   86 continue
      ymag    = cabs(elem)
      if(ymag .gt. eps4) then

    write(iout,1005) j,k,nbext(j),nbext(k),elem
    write(6,1005) j,k,nbext(j),nbext(k),elem
  endif

   85 continue
      stop
      end


